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Abstract Molecules arranging themselves into predictable patterns on silicon chips
could lead to microprocessors with much smaller circuit elements. Mathematically,
assembling in predictable patterns is equivalent to packing in graphs. An H -packing
of a graph G is a set of vertex disjoint subgraphs of G, each of which is isomorphic
to a fixed graph H . If H is the complete graph K2, the maximum H -packing problem
becomes the familiar maximum matching problem. In this paper we give algorithms to
find a perfect packing of HC(n) with P6 and K1,3 when n is even and thus determines
their packing numbers. Further we also study the packing of HC(n) with 1, 3-dimethyl
cyclohexane.

Keywords Matching · H -packing · F-packing · Perfect packing ·
Honeycomb networks

1 Introduction and terminology

Producing patterns with thin films of silicon to form nanomesh structures reduces
their thermal conductivity without compromising their good electrical properties [7].
Further arranging molecules themselves into predictable patterns on silicon chips
could lead to microprocessors with much smaller circuit elements [12]. The features
on computer chips are getting so small that soon the process used to make them, which
has hardly changed in the last 50 years, will not be applicable anymore. One of the
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alternatives that academic researchers have been exploring is to create tiny circuits
using molecules that automatically arrange themselves into useful patterns. In a paper
that appeared in “Nature Nanotechnology”, MIT researchers have reported taking an
important step towards this goal [9].

Mathematically, assembling in predictable patterns is equivalent to packing in
graphs. An H -packing of a graph G is a set of vertex disjoint subgraphs of G, each of
which is isomorphic to a fixed graph H . From the optimization point of view, maxi-
mum H -packing problem is to find the maximum number of vertex disjoint copies of
H in G called the packing number denoted by λ(G, H). For our convenience λ(G, H)

is sometimes represented as λ. An H -packing in G is called perfect if it covers all ver-
tices of G. If H is the complete graph K2, the maximum H -packing problem becomes
the familiar maximum matching problem.

Structures realized by arrangements of regular hexagons in the plane are of interest
in the chemistry of benzenoid hydrocarbons, where perfect matchings correspond to
kekule structures and feature in the calculation of molecular energies associated with
benzenoid hydrocarbon molecules [8]. H -Packing, is of practical interest in the areas
of scheduling [1], wireless sensor tracking [3], wiring-board design, code optimization
[10] and many others.

An F-packing is a natural generalization of H -packing concept. For a given family
F of graphs, the problem is to identify a set of vertex-disjoint subgraphs of G, each
isomorphic to a member of F . The F-packing problem is to find an F-packing in a
graph G that covers the maximum number of vertices of G. When H is a connected
graph with at least three vertices, Kirkpatrick and Hell proved that the maximum
H -packing problem is NP-complete [10]. Packing lines in a hypercube has been stud-
ied in [6]. Algorithms are available for dense packing of trees of different sizes [17]
and packing almost stars [5] into the complete graph. In this paper we give algorithms
to find a perfect packing of HC(n) with P6 and K1,3 when n is even and thus deter-
mines their packing numbers. Further we also study the packing of HC(n) with 1,
3-dimethyl cyclohexane.

2 Honeycomb networks

Various surface nanotemplates that are naturally or artificially patterned at the nano-
metre scale have been used to form periodic nanostructure arrays. The formation
mechanism of these nanomesh template is attributed to the self-assembly of accumu-
lated carbon atoms into well-ordered honeycomb structures at the nanometre scale
[4].

A honeycomb network can be built in various ways. The honeycomb network
HC(1) is a hexagon; see Fig. 1a. The honeycomb network HC(2) is obtained by
adding a layer of six hexagons to the boundary edges of HC(1) as shown in Fig. 1b.
Inductively honeycomb network HC(n) is obtained from HC(n − 1) by adding a
layer of hexagons around the boundary of HC(n − 1). The number of vertices and
edges of HC(n) are 6n2 and 9n2− 3n respectively [14]. If Co

n denotes the outer cycle
of HC(n), then the number of vertices in Co

n is 12n − 6. Let the top leftmost vertex
in HC(n) be denoted by xo

n . See Fig. 1c.
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Fig. 1 a HC(1) b HC(2) c 3-dimensional honeycomb network

Honeycomb networks, thus built recursively using hexagonal tessellation, are
widely used in computer graphics, cellular phone base station [15], image processing
[2], and in chemistry as the representation of benzenoid hydrocarbons [14]. Honey-
comb networks bear resemblance to atomic or molecular lattice structures of chemical
compounds. In the sequel let Cn and Pn denote a cycle and a path on n vertices respec-
tively. To prove the result in this paper we require to introduce co-ordinate axes for
the honeycomb networks as follows:

The edges of HC(1) are in 3 different directions. If the perpendicular bisectors of
these edges meet at point O , then O is called the centre of the honeycomb network
HC(1). O is also considered to be the center of HC(n). Through O draw three lines
perpendicular to the three edge directions and name them as α, β, γ axes. See Fig. 1c.
The α line through O , denoted by α0, passes through 2n−1 hexagons. Any line paral-
lel to α0 and passing through 2n−1−i hexagons is denoted by αi , 1 ≤ i ≤ n−1 if the
hexagons are in the clockwise sense about αo and by α−i , 1 ≤ i ≤ n−1 if the hexagons
are in the anti-clockwise sense about α0. In the same way β j , β− j , 0 ≤ j ≤ n − 1,
and γk, γ−k, 0 ≤ k ≤ n − 1 are defined.

3 A tight upper bound for λ(G,H)

In this section, we obtain an upper bound for λ(G, H) and prove that the bound is
tight.

Theorem 1 Let G be a graph and H be a subgraph of G. Then λ(G, H) ≤
⌊ |V (G)|
|V (H)|

⌋
.

Proof It is clear that λ number of vertex disjoint copies of H in G cover λ(G, H)×
|V (H)| distinct vertices of G. Therefore λ(G, H)× |V (H)| ≤ |V (G)|. ��

The following result is an easy consequence of the fact that HC(n) has 6n2 vertices.

Theorem 2 There exists a perfect H-packing of HC(n) with n2 copies of H where
H � P6.
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Proof By Theorem 1, λ ≤ n2. For k = 1, 2, . . . , n we have Co
k � C12k−6. Let

V (Co
k ) = {1, 2, . . ., 12k−6}. Then St = {6t+1, 6t+2, 6t+3, 6t+4, 6t+5, 6t+6}

where 0 ≤ t ≤ 2k − 2 is a partition of Co
k into paths of length 6. Therefore λ ≥

1+ 3+ · · · + (2n − 1) = n2. Thus λ = n2. ��

Remark 1 If a graph G is perfectly packed by Pn then G is also perfectly packed by
Pd for all divisors d of n.

In the view of Remark 1 it follows that HC(n) can also be packed by P2 and P3.
We further observe that HC(n) can be packed by P4 when n is even.

Conjecture Let H be isomorphic to the graph K1,3 with one edge replaced by a path
of length 3. Then there exists a perfect H-packing of HC(n).

4 Packing of HC(n) with C6

Though HC(n) is a C6 tessellation, it is interesting to note that HC(n) does not have
a perfect H -packing when H � C6. We begin this section with an algorithm to pack
HC(n) with C6 and obtain a lower bound for λ (HC(n), C6).

Procedure PACKING(HC(n), C6)
Input: A honeycomb network G of dimension n and H � C6.
Algorithm:

(i) Select the hexagon H = HC(1) isomorphic to C6.
(ii) Having selected hexagon H , select the hexagons among the six hexagons (if

they exist) each containing a vertex adjacent to a vertex in H which have not
been already selected. H ← H ∪ {selected hexagons}.

(iii) Repeat (ii) till it is not possible to select any more hexagons in G. See Fig. 2.

End PACKING
Output: An H -packing of G with n2 − n − 1 copies of C6 when n ≡ 2 (mod 3),

and with n2 − n + 1 copies of C6 when n ≡ 0, 1 (mod 3).

Fig. 2 Hexagons colored in
HC(4) are selected through
PACKING (HC(n), C6)
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Proof of Correctness The selection process in (ii) implies that between any two
selected hexagons through which an α-line passes, there are two adjacent hexagons
which are not selected.

We observe that αi , i even, passes through odd number of hexagons. By (i), HC(1)

has already been selected. Hence all middle hexagons through which the lines αi , i
even, pass are selected and every third hexagon along the same α-line from the already
selected hexagons contribute to the set of selected hexagons. In otherwords, there are
2× ⌊ 2n−i−2

6

⌋+ 1 number of selected hexagons through which αi , i even, passes.
For i odd, αi passes through an even number of hexagons and the two adjacent mid-

dle hexagons remain not selected. The hexagons on either side of these two middle
hexagons through which αi passes are selected and every third hexagon is selected as
in the case of αi , i even. In otherwords, there are 2 × ⌈ 2n−i−3

6

⌉
number of selected

hexagons through which αi , i odd, passes.
Therefore,

λ≥
⎧⎨
⎩

2
[∑n−1

i=2,4

(
2

{⌊ 2n−i−2
6

⌋}+1
)+∑n−2

i=1,3 2
⌈ 2n−i−3

6

⌉]
+2×⌊ 2n−2

6

⌋+1 n odd

2
[∑n−2

i=2,4

(
2

{⌊ 2n−i−2
6

⌋}+1
)+∑n−1

i=1,3 2
⌈ 2n−i−3

6

⌉]
+2×⌊ 2n−2

6

⌋+1 n even

(1)

Let n ≡ 2 (mod 3). We begin with the case when n is even. Suppose n= 6k+ 2, k= 1,

2, 3, . . .. Then by (1) the number of selected hexagons is 2
[
9k2−k+6k+9k2+5k

]+
2× 2k + 1 = 36k2 + 18k + 1 = n2 − n − 1.

On the otherhand when n is odd, let n = 6k + 5. k = 1, 2, . . .. Again by (1), the
number of selected hexagons is n2 − n − 1. By a similar argument the result holds
good when n ≡ 0, 1 (mod 3). ��
Remark 2 The vertices of the selected hexagons are said to be saturated and all other
vertices are unsaturated.

5 Honeycomb torus network

Honeycomb torus network can be obtained by joining pairs of nodes of degree two
of the honeycomb network. In order to achieve edge and vertex symmetry, the best
choice for wrapping around seems to be the pairs of nodes that are mirror symmetric
with respect to three lines, passing through the center of the hexagonal network, and
normal to each of the three edge orientations. Figure 3 shows how to wraparound
honeycomb network of size three (HC(3)) to obtain H T (3), the honeycomb torus of
dimension three. The procedure PACKING (HC(n), C6) gives a lower bound for λ

when n ≡ 1, 2(mod 3). We prove that the lower bound is tight. The stratergy adopted
is to find a perfect packing for the honeycomb torus and delete edges to obtain HC(n)

that contribute minimum number of selected hexagons.

Theorem 3 For n ≡ 1, 2(mod 3) , there exists a perfect H-packing of H T (n) where
H � C6.
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Fig. 3 Honeycomb torus of size
three

Proof When n ≡ 1 (mod 3), the procedure PACKING (HC(n), C6) leaves 6(n − 1)

number of unsaturated vertices. On the otherhand, n ≡ 2(mod 3) leaves 6(n+1) num-
ber of unsaturated vertices. The wraparound edges contribute n−1 or n+1 number of
vertex disjoint cycles of length 6 which are also disjoint from the already chosen cycles
obtained using Procedure PACKING (HC(n), C6), according as n ≡ 1(mod 3) or
n ≡ 2(mod 3) respectively. Hence λ = n2. ��
Theorem 4 Let G � HC(n), n ≥ 3 and H � C6. Then λ ={

n2 − n + 1 f or n ≡ 1 (mod 3)

n2 − n − 1 f or n ≡ 2 (mod 3)
.

Proof Deletion of wraparound edges in H T (n) yields HC(n), and the contribution
to λ by the hexagons formed using the wraparound edges is minimum. ��
Conjecture Let G � HC(n), n ≥ 3 and H � C6. Then λ = n2 − n + 1 for
n ≡ 0 (mod 3).

6 Packing HC(n) with claw

One of the most widely studied packing is claw-packing [5]. A claw is another name
for the complete bipartite graph K1,3. A claw-free graph is a graph in which no induced
subgraph is a claw.

The packing of induced stars in a graph has been studied in [13]. Las Vergnas proved
that the {S1, …, Sk}-packing problem where St � K1,t is polynomially solvable [16].
On the contrary, Hell and Kirkpatrick [11] proved that the packing problem when
F = {Si : i ∈ J } is NP-complete whenever J ⊆ N is not of the form {1, 2, . . . , k}.
In this section we study the packing of HC(n) with S3.

Definition 1 The subgraph induced by Co
i and Co

i−1 in HC(n) is called a Circular
channel and is denoted by CC(i) for i = 3, 5, . . . , n if n is odd and for i = 2, 4, . . . , n
if n is even.

Figure 4 is the Circular channels in HC(3) and HC(4).
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Fig. 4 Circular channels in HC(3) and HC(4)

Definition 2 Given a vertex x in a hexagon, the unique vertex y at distance 3 from it
is called the diagonally opposite vertex of x .

Procedure PACKING(HC(n), S3)
Input: A honeycomb network G of dimension n and H � S3.
Algorithm:

Take k = n.
While k ≥ 2 Do

(i) Start at a vertex u of degree 3 adjacent to xo
n in CC(k). Call u a saturated vertex.

Saturate a sequence of diagonally opposite vertices of hexagons beginning with
vertex u in the clockwise direction. Proceed till a vertex v of degree 2, if any, is
reached. Fix the next vertex in the sequence as the vertex w at distance 3 from
v on Co

k . In addition saturate the unique vertex w′ in CC(k − 2) at distance 4
from v.

(ii) Continue the process as in (i) beginning with w till vertex u is reached. See
Fig. 5.

k ← k − 2.
Repeat
End PACKING
Output: A perfect H -packing of HC(n) when n is even and an H -packing of

HC(n) with at most 18 unsaturated vertices, if n is odd.

Proof of Correctness The subgraph induced by N [v] when v is a saturated vertex is
isomorphic to S3. Now N [u]∩N [v] = � for all pairs of saturated vertices. For n even,
CC(k) contains 6(k−1) number of saturated vertices, k = n, n−2, . . . , 2. The closed
neighbourhoods of these saturated vertices together cover 4 × 6[(n − 1) + (n − 3)

+ · · · + 1] = 6n2 vertices. Therefore the H -packing is perfect and λ =
⌊

6n2

4

⌋
.

For n odd, CC(k) contains 6k−9 number of saturated vertices k = n, n−2, . . . , 3
covering 4×3 [(2n − 3)+ (2n − 7)+ · · · + 3]+4×3× ( n−3

2

) = 6n2−18 vertices.

Therefore λ ≥
⌊

6n2

4

⌋
. ��

The graph in Fig. 6 is known as 1, 4-dimethyl cyclohexane in chemistry.
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Fig. 5 H -packing of HC(n) when H � S3 by traversing through diagonally opposite vertices of hexagons.
a HC(4), b HC(5)

Fig. 6 1, 4-dimethyl
cyclohexane

Corollary 1 When H is isomorphic to 1, 4-dimethyl cyclohexane, there exists a perfect
H-packing of HC(n) when n is even.

Proof It is clear that the vertex set of each selected H obtained from PACKING
(HC(n), S3) can be partitioned into two disjoint sets each inducing a subgraph iso-
morphic to S3. ��

The algorithm PACKING (HC(n), S3) leaves 18 unsaturated vertices in HC(n)

when n is odd. With the introduction of F-packing we modify the algorithm to pack
HC(n) with an F-packing where F = {S3, S2} with maximum number of copies of
S3, and the rest being S2.

Procedure PACKING(HC(n), {S3, S2})
Input: A honeycomb network G of dimension n, n odd, and F = {S3, S2}.
Algorithm:

(i) Call Procedure PACKING (HC(n), S3).
(ii) The 18 unsaturated vertices excluded in the algorithm induce three paths each

of length 2 with 3 of the corner vertices as the center vertices of these paths
together with three more paths each of length 2 with three independent vertices
of HC(1) as center vertices.

End PACKING
Output: An F-packing of HC(n) with

⌊
6n2

4

⌋
− 4 copies of S3 and six copies of

S2.
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Proof of Correctness The copies of S3 and S2 selected by the procedure are disjoint

and cover 4×
(⌊

6n2

4

⌋
− 4

)
+ 6× 3 = 6n2 vertices. ��

7 Packing HC (n) with 1, 3-dimethyl cyclohexane

The graph H in Fig. 7 is the well known structure in chemistry, known as 1, 3-dimethyl
cyclohexane. We call vertex u the top vertex of H, v the bottom vertex of H and t1
and t2 the tail vertices of H respectively. In this section we study the H -packing of
HC(n).

Procedure PACKING(HC(n), 1, 3-dimethyl cyclohexane)
Input: A honeycomb network G of dimension n and H isomorphic to a 1, 3-

dimethyl cyclohexane.
Algorithm: Start at the top leftmost vertex xo

n of HC(n) as the top vertex of a 1,
3-dimethyl cyclohexane and identify H as a subgraph of HC(n). Choose top vertices
alternately in the hexagons through which the line αi passes and the hexagons through
which both αi and αi−1 pass, 1 ≤ i ≤ n − 1. See Fig. 8.

Output: An H -packing of HC(n) with λ ≥
⌊

6n2

8

⌋
− ⌈ n

2

⌉
when n is odd and

λ ≥
⌊

6n2

8

⌋
− ⌊ n

2

⌋
when n is even.

Proof of Correctness The mirror images of the cycles selected in the Procedure PACK-
ING (HC(n), 1, 3-dimethyl cyclohexane) about the α0 line together with the already

Fig. 7 1, 3-dimethyl
cyclohexane u

vt1 t2

Fig. 8 Illustrating the procedure packing 1, 3-dimethyl cyclohexane in HC(4) and HC(5)
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selected ones yield a packing of 1, 3-dimethyl cyclohexane. We select 1, 3-dimethyl
cyclohexane through which the lines αn−1, αn−3, . . . , α1 pass when n is even. Hence

λ ≥ 2[(n − 1)+ (n − 2)+ · · · + n
2 ] =

⌊
6n2

8

⌋
− ⌊ n

2

⌋
.

We also select 1, 3-dimethyl cyclohexane through which the lines αn−1,

αn−3, . . . , α0 pass when n is odd. Therefore λ ≥ (n − 1) + 2[(n − 2) + (n − 2) +
(n − 4)+ (n − 4)+ · · · + 1+ 1] =

⌊
6n2

8

⌋
− ⌈ n

2

⌉
. ��

8 Conclusion

In this paper we investigate various patterns embedded in the honeycomb network.
This motivates us to consider packing in other benzenoid structures. As the study of
packing is applicable to both chemistry and computer science, it would also be interest-
ing to consider interconnection networks such as hexagonal mesh, butterfly networks,
hypercube networks, benes networks, etc and find patterns that pack these networks.
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